skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kooistra, Robin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Studies of low-redshift galaxy clusters suggest the intracluster medium (ICM) has experienced nongravitational heating during the formation phase of the clusters. Using simple phenomenological heating prescriptions, we simulate the effect of this preheating of the nascent ICM in galaxy protoclusters and examine its effect on Lyαforest tomographic maps. We analyze a series of cosmological zoom-in simulations of protoclusters within the framework of the Lyαtransmission−dark matter (DM) density distribution. We find that the more energy is injected into the proto-ICM atz= 3, the more the distribution at high DM density tilts toward higher Lyαtransmission. This effect has been confirmed in both low-resolution simulations adopting a preheating scheme based on entropy floors, as well as in higher-resolution simulations with another scheme based on energy floors. The evolution of the slope of this distribution is shown to vary with redshift. The methodology developed here can be applied to current and upcoming Lyαforest tomographic survey data to help constrain feedback models in galaxy protoclusters. 
    more » « less